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ABSTRACT 35 

Accurate and long-term rainfall estimates are the main inputs for several applications, spanning from crop modeling to 36 

climate analysis. In this study, we present a new rainfall data set (SM2RAIN-CCI) obtained from the inversion of the 37 

satellite soil moisture (SM) observations derived from the ESA Climate Change Initiative (CCI) via SM2RAIN (Brocca 38 

et al., 2014). Daily rainfall estimates are generated for an 18-year long period (1998-2015), with a spatial sampling of 39 

0.25° on a global scale and are based on the integration of the ACTIVE and the PASSIVE ESA CCI SM data sets. 40 

The quality of the SM2RAIN-CCI rainfall data set is evaluated by comparing it with two state-of-art rainfall satellite 41 

products, i.e. the Tropical Measurement Mission Multi-satellite Precipitation Analysis 3B42 real-time product (TMPA 42 

3B42RT) and the Climate Prediction Center Morphing Technique (CMORPH), and one modelled data set (ERA-43 

Interim). The assessment is carried out on a global scale at 1° of spatial sampling and 5-day of temporal sampling by 44 

comparing these products with the gauge-based Global Precipitation Climatology Centre Full Data Daily (GPCC-FDD) 45 

product. SM2RAIN-CCI shows relatively good results in terms of correlation coefficient (median value >0.56), Root 46 

Mean Square Difference (RMSD, median value <10.34 mm) and BIAS (median value <-14.44%) during the evaluation 47 

period. The validation has been also carried out at original resolution (0.25°) over Europe, Australia and other 5 areas 48 

worldwide to test the capabilities of the data set to correctly identify rainfall events under different climate and 49 

precipitation regimes. 50 

The CCI-SM derived rainfall data set is freely available at http://www.esa-soilmoisture-cci.org at 51 

https://doi.org/10.5281/zenodo.846259. 52 

1 INTRODUCTION 53 

Accurate estimation of rainfall is of paramount importance for many applications, e.g. natural hazards risk assessment 54 

and mitigation, famine and disease monitoring, water resources management, weather forecasting and climate 55 

modelling (Dinku et al., 2007). 56 

Ground stations provide very accurate local estimates of rainfall (Villarini et al., 2008) and are considered the most 57 

accurate source of rainfall data for modelling and process monitoring. However, two main issues limit their usefulness. 58 

Firstly, they are characterized by a non-homogenous coverage (Kidd et al., 2016) throughout the globe and, secondly, 59 

they are only representative of a limited area around the gauge. These limitations impact the use of rain gauge data 60 

mainly over large and remote areas. Another source of rainfall information are ground meteorological radars, which are 61 

able to provide measurements that are more representative of the actual rainfall spatial variability. However, also 62 

ground meteorological radars are affected by issues that reduce the quality of the rainfall estimates such as beam 63 

blockage and frozen hydrometeors. In addition, ground-based observations are subjected to high costs of maintenance 64 

related to setting up, calibration and fixing of raingauges and radars. These issues can limit the use of ground rainfall 65 

estimates, especially in developing countries. 66 

Satellite rainfall estimates can offer a valuable alternative to ground-based observations and today provide 67 

measurements at an increased spatial and temporal resolution. For example, the recent NASA/JAXA joint Global 68 

Precipitation Measurement (GPM, Hou et al., 2014) mission delivers rainfall products in near real-time with a spatial 69 

sampling of 0.1° every 30 minutes, by using a constellation of satellite sensors. A large number of satellite rainfall 70 

products have been developed in the past, e.g. the near-real-time Tropical Rainfall Measurement Mission Multi-satellite 71 

Precipitation Analysis (TMPA 3B42RT, Huffman et al., 2007); the Precipitation Estimation from Remotely Sensed 72 

Information using Artificial Neural Networks (PERSIANN, Hsu et al., 1997), the Climate Prediction Center 73 
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MORPHing technique, (CMORPH, Joyce et a., 2004), and the Climate Hazards Group InfraRed Precipitation with 74 

Station, (CHIRPS, Funk et al., 2015) products. These products are being used worldwide for several applications, such 75 

as drought and famine monitoring, weather forecasts and natural hazard risk mitigation. When providing a sufficiently 76 

long observation period, they are also used for climatological applications like the PERSIANN-Climate Data Record 77 

(Ashouri et al., 2015), which provides continuous rainfall estimates since 1983. Despite the relative advantages of 78 

having an estimate of rainfall in every place of the earth, satellite rainfall estimates, like ground observations, are not 79 

free of errors. In fact, the instantaneous satellite-based retrievals of precipitation, which is a process subject to high 80 

spatial and temporal variability, makes the reconstruction of the accumulated rainfall at longer temporal scales (e.g., 81 

daily accumulated rainfall) challenging (Trenberth and Asram, 2014). Another issue is related to the estimation of light 82 

rainfall, especially over land, which is impacted by the land surface emissivity (Kucera et al., 2013). These aspects 83 

negatively affect the rainfall estimates at the measurement area limiting their use especially for operational purposes, 84 

like natural hazards assessment. The use of a constellation of satellites, as adopted in the GPM mission, is able to 85 

mitigate the issue of the accumulated rainfall estimation through more frequent satellite overpasses during a day, thus 86 

reducing the errors associated with the retrievals (Panegrossi et al., 2016).   87 

A way to improve the quality of satellite rainfall estimates has been explored recently by means of different approaches 88 

and relies on the use of satellite surface soil moisture (SSM) data (Crow et al., 2009, 2011; Pellarin et al., 2013; Brocca 89 

et al., 2013, 2014; Wanders et al., 2015; Zhan et al., 2015). These approaches exploit the strong relationship between 90 

SSM and rainfall to correct and/or estimate rainfall by using satellite surface SM data. Among these methods, 91 

SM2RAIN (Brocca et al., 2013) is the only technique that directly provides rainfall estimates from SSM observations 92 

while the others are correction-based techniques. SM2RAIN has been used to estimate precipitation from various 93 

single-sensor SSM products, e.g. from ASCAT, SMOS, etc… (Brocca et al., 2013, 2014, 2016; Ciabatta et al., 2015, 94 

2017; Koster et al., 2016, Massari et al. 2017).  95 

With the aim of facing and monitoring climate change, the European Space Agency (ESA) has established the so-called 96 

Climate Change Initiative (CCI) project. The objective is to exploit Earth Observation data sets for providing useful 97 

information to policy makers about several Essential Climate Variables (ECV). Within the CCI programme, three long-98 

term SM products (>37 years) have been developed by merging SSM retrievals from both active and passive microwave 99 

instruments carried by various satellite platforms (Liu et al., 2011, Liu et al., 2012, Wagner et al., 2012). More 100 

specifically, the CCI SM project provides three different products, namely Active (obtained by merging radar-estimated 101 

SM), Passive (obtained by merging radiometer–estimated SM) and Combined (obtained by merging the Active and 102 

Passive data sets). The availability of these SM data records opens up new opportunities for creating independent long-103 

term rainfall data sets based on SM2RAIN.  104 

The objective of this study is to present and evaluate a quasi-global long-term SM2RAIN-CCI rainfall data set obtained 105 

from the inversion of the ESA CCI SM via the SM2RAIN algorithm (Brocca et al., 2014). The SM2RAIN-CCI rainfall 106 

data set is compared against several precipitation products, e.g. TMPA 3B42RT, CMORPH, ERA-Interim, the Global 107 

Precipitation Climatology Centre Full Data Daily (GPCC-FDD) product (Schamm et al., 2015) and the recently 108 

developed Multi-Source Weighted-Ensemble Precipitation (MSWEP, Beck et al., 2016). The analysis is performed on a 109 

global scale at 1° spatial sampling, during the period 1998-2015. In addition, a regional scale analysis at 0.25° spacing 110 

is performed by comparing SM2RAIN-CCI estimates against high quality ground-based observations over Europe, 111 

India and Australia.  112 
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2 DATA AND METHODS 113 

2.1 Data set generation 114 

2.1.1 State-of-the-art rainfall data sets  115 

In this study, five state-of-the-art rainfall products including models, satellite-based and ground-based observations are 116 

intercompared with the new SM2RAIN-CCI data set. In particular, the two following products are considered as 117 

benchmark:  118 

GPCC-FDD, available at 1° spatial sampling during the period 1988-2013 (ground based data set) at daily temporal 119 

resolution, used for calibrating SM2RAIN; 120 

MSWEP, available from 1
st
 January 1979 to 31

st
 December 2015 at 0.25° spatial sampling on a daily basis (combination 121 

of models, ground measurements and satellite observations), used as independent benchmark for the yearly global 122 

analysis.  123 

Three rainfall data sets are additionally used for cross-comparison with the SM2RAIN-CCI product: 124 

1) TMPA 3B42RT (hereinafter referred to as TRMMRT), available from 1
st
 March 2000 to present at 0.25° 125 

spatial resolution for the ± 50° latitude band every 3 hours (only satellite); 126 

2) CMORPH raw data (hereinafter referred to as CMORPH), available from 1
st
 January 2000 to present at 0.25° 127 

spatial resolution for the ± 60° latitude band every 3 hours (only satellite); 128 

3) ERA-Interim reanalysis product, available from 1
st
 January 1978 to present at 0.77° spatial sampling on a daily 129 

basis (Dee et al., 2011) (reanalysis). 130 

Due to the different spatial sampling and coverage (both in space and in time), the assessment is carried out during the 131 

period 1998-2013 for the ± 50° latitude band (due to data availability TRMMRT and CMORPH are considered starting 132 

from 2000).   133 

The GPCC-FDD data set is a gauge-based product. The number of stations used in the data set varies throughout the 134 

years. In total, data from more than 60000 stations are used. GPCC-FDD is provided on a global scale over a grid with 135 

1° spatial sampling and on a daily basis. The product is available for the period 1988-2013. Here, GPCC-FDD is used 136 

as benchmark because it is completely independent from any satellite data and it does not contain any missing values 137 

(Herold et al., 2017). For further details, the reader is referred to Schamm et al. (2015). 138 

MSWEP is a recently developed rainfall data set that combines precipitation information from several sources, 139 

including GPCC-FDD, TRMMRT, CMORPH and ERA-Interim. The estimates obtained through satellite sensors, 140 

global models and in-situ stations are merged by the use of integration weights. The product is available from 1979 to 141 

2015 with a spatial sampling of 0.25°. More information about MSWEP can be found in Beck et al. (2016). 142 

TRMMRT provides rainfall estimates by taking advantage of multiple satellite sensors, i.e., the TRMM Microwave 143 

Imager (TMI), the Special Sensor Microwave Imager (SSM/I), the Advanced Microwave Scanning Radiometer - Earth 144 

Observing System (AMSR-E) and the Advanced Microwave Sounding Unit B (AMSU-B). The microwave estimates 145 

are blended with infrared (IR) observations derived from sensors on board of Geostationary Earth Orbit (GEO) 146 

platforms to obtain rainfall estimates at higher temporal and spatial resolution. The product is provided for the ± 50° 147 

latitude band over a grid with a 0.25° spacing every 3 hours. Daily accumulated rainfall is computed by summing up all 148 

rainfall estimates within one day. In this study the TMPA-3B42RT version 7 is used. For more details about the 149 

TRMMRT product, the reader is referred to Huffman et al. (2007).  150 

CMORPH uses precipitation estimates derived from the same microwave sensors used for TRMMRT generation, and 151 

uses GEO-IR data to propagate the microwave estimates at the times between two successive microwave satellite 152 
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overpasses. The product is considered at daily temporal resolution over the 0.25° sampling TRMMRT grid for the ± 60° 153 

latitude band. In this study, CMORPH raw data version 1.0 are considered. The reader is referred to Joyce et al. (2004) 154 

for more details about CMORPH. 155 

ERA-Interim is a reanalysis product provided by the European Centre for Medium-Range Weather Forecasts 156 

(ECMWF). It is based on a global atmospheric model in which different types of observations are routinely assimilated. 157 

The product is available from 1979 with a spatial resolution of about 0.77°. The data used have been downloaded from 158 

the ECMWF FTP (http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/) resampled over the 159 

0.25° CCI grid. For further details about ERA-Interim, the reader is referred to Dee et al. (2011). 160 

2.1.2 ESA CCI Soil Moisture  161 

The ESA CCI (http://www.esa-soilmoisture-cci.org/) provides long-term SM data sets for the period 1978-2015 (Liu et 162 

al., 2011; Dorigo et al., 2015; Dorigo et al., in review). The products are provided on a global scale with a spatial 163 

sampling of 0.25° with daily temporal sampling in three different configurations. The passive microwave product 164 

(hereinafter referred to as “PASSIVE“) is provided for the period 1978-2015 and it is generated by merging SM 165 

products derived from the Scanning Multichannel Microwave Radiometer (SMMR, operating at 6.6 and 10.7 GHz, Owe 166 

et al., 2001), the Special Sensor Microwave Imager (SSM/I, operating at 19.35 GHz, Owe et al., 2008), the TRMM 167 

Microwave Imager (TMI, operating at 10.65 GHz and above, Gao et al., 2006), the Advanced Microwave Scanning 168 

Radiometer  - Earth Observing System (AMSR-E, operating at 6.9 and 10.65 GHz, Owe et al. 2008) and its successor 169 

AMSR2 (operating  at 6.93, 7.3 and 10.65 GHz),  WindSat (operating between 6.8 and 37 GHz, Li et al., 2010 and 170 

Parinussa et al., 2012) and the ESA Soil Moisture and Ocean Salinity mission (SMOS, Kerr et al., 2012). Although the 171 

PASSIVE data set is obtained by considering some of the sensors used for creating the TMPA products, this will not 172 

impact the comparison between TRMMRT and SM2RAIN-CCI as different microwave frequency are taken into 173 

account for rainfall estimation. The Active data set (hereinafter referred to as “ACTIVE”) is provided for the period 174 

1991-2015 and it is generated by merging active microwave satellite retrievals from the European Remote Sensing 175 

satellites (ERS-AMI, operating at 5.3 GHz) and from the Advanced Scatterometer (ASCAT, operating at 5.255 GHz, 176 

Wagner et al., 2013) onboard the Metop-A and -B satellites. The third data set (hereinafter referred to as 177 

“COMBINED”) is obtained by merging the ACTIVE and PASSIVE products. The merging of the individual data sets is 178 

performed by means of a weighted averaging which is parameterized using a triple collocation (TC, Stoffelen, 1998) 179 

approach (Gruber et al., accepted). In this study, we consider the ESA CCI SM product at version v03.2. For further 180 

details regarding the ESA CCI SM product development, sensors availability and performances the reader is referred to 181 

Liu et al., (2011; 2012), Dorigo et al., (2015; in review) and Wagner et al., (2012). 182 

2.2 ESA CCI Soil Moisture pre-processing 183 

Before applying SM2RAIN algorithm the following preprocessing steps are applied to the ESA CCI SM data sets. A 184 

static mask (Figure 1) is used to mask out periods with high frozen soil and snow probability, rainforest areas and areas 185 

with high topographic complexity. The latter two are provided within the ESA CCI SM data portal. Notice that deserts 186 

are particularly challenging for SM retrieval from active instruments. Therefore, we use the passive data set only in 187 

such areas (see Section 2.3), which typically provides more reliable retrievals over desert areas (Dorigo et al., 2010). 188 

Moreover, a dynamic mask is applied to SSM data on a daily basis in order to remove observations characterized by 189 

issues in the retrieval (frozen soil, dense vegetation). This mask is provided alongside with each of the ESA CCI SM 190 

products. After the application of the dynamic mask, many temporal gaps are found within the SM time series.  In order 191 
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to reduce the data gaps, the time series are interpolated to 00:00 UTC. A maximum data gap of three days is considered 192 

for the temporal interpolation. Data gaps larger than three days are left empty, i.e., no rainfall estimation is carried out 193 

within these intervals. Prior to 1998, the SM data sets are characterized by a low temporal coverage and a reduced data 194 

quality (Dorigo et al., 2015). Thus, the SM2RAIN-CCI product is generated only for the period 1998-2015. The original 195 

ACTIVE and PASSIVE CCI SM data sets have been read and preprocessed by using routines developed in Python® 196 

language by the TUWIEN Remote Sensing Research Group (Ciabatta et al., 2016). After the preprocessing steps, the 197 

ESA CCI SM data are ready to be used as input in SM2RAIN.  198 

2.3 SM2RAIN algorithm and SM2RAIN-CCI rainfall product generation 199 

The SM2RAIN algorithm (Brocca et al., 2013, 2014) allows to derive rainfall estimates from SM observations. It is 200 

based on the inversion on the following soil water balance equation: 201 

btasdttdsZtp )(/)()( *                                                            (1) 202 

where p(t) is the estimated rainfall, Z* is the soil water capacity (soil depth times soil porosity), s(t) is the relative soil 203 

saturation, t is the time and a and b are two parameters describing the non-linearity between soil saturation and 204 

drainage. Z*, a and b are estimated through calibration. The algorithm is based on the assumption that during rainfall 205 

evapotranspiration is negligible and surface runoff occurs only when the soil is fully saturated (Brocca et al., 2015). 206 

SM2RAIN has also the main limitation of not being able to estimate rainfall if the soil is close to saturation, since no 207 

SM variations can be observed after rainfall events in such conditions. 208 

The algorithm has proved to accurately estimate rainfall both on a regional (Abera et al., 2016; Brocca et al., 2013; 209 

2015; 2016; Ciabatta et al., 2015, 2017) and on a global scale (Brocca et al., 2014; Koster et al., 2016). For further 210 

details about the SM2RAIN formulation, the reader is referred to Brocca et al. (2013; 2014). 211 

The SM2RAIN parameters are obtained by minimizing the Root Mean Square Difference (RMSD) between the 5-day 212 

estimated rainfall and the GPCC-FDD data during three calibration periods 1998-2001, 2002-2006, 2007-2013 on a 213 

pixel-by-pixel basis. We considered 5-day of accumulation to reduce the amount of data and speed-up the calibration 214 

step. The use of different calibration periods relies on the different data and sensors that we used for building the 215 

ACTIVE and PASSIVE SSM data sets (Table 1, see also Dorigo et al., 2012). The calibration is performed on a pixel-216 

by-pixel basis separately for ACTIVE and PASSIVE. SM2RAIN was also applied to the COMBINED SSM data set, 217 

but we observed a reduction of performance with respect to the individual ACTIVE and PASSIVE products (not 218 

shown), hence the COMBINED SSM data set is not considered here. In order to match the different spatial resolutions 219 

of the considered data sets, GPCC-FDD was regridded to the 0.25° CCI grid by using the griddata function 220 

implemented in MATLAB® R2012a, through linear interpolation. After the application of SM2RAIN to the ACTIVE 221 

and PASSIVE SM data sets, the two obtained rainfall products are integrated through: 222 

PASACTCCIRAINSM PkkPP )1(2                                                                (2) 223 

where PACT and PPAS are the two rainfall data sets obtained through the application of SM2RAIN to the ACTIVE and the 224 

PASSIVE SM data sets, respectively, and PSM2RAIN-CCI is the final SM2RAIN-CCI rainfall data set. The integration 225 

weights (k) are estimated through (Kim et al., 2015): 226 

              

PBAPABABAPPB

ABAPABk




**

*




                                                        (3) 227 

Where   is the Pearson correlation coefficient between two data sets with the subscript A, P and B denoting the 228 

ACTIVE, the PASSIVE and the benchmark (GPCC-FDD in this case) rainfall estimates, respectively. When one of the 229 
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two data sets (PACT or PPAS) is not available at a certain location (e.g., due to unfavorable retrieval conditions), then only 230 

the available one is used for the generation of the combined rainfall product. The workflow is depicted in Figure 2. The 231 

data are available in netCDF format via the CCI SM FTP server. The rainfall data are provided in mm per day, over 232 

land at 0.25° of sampling. The SM2RAIN-CCI data set temporal coverage will be extended when new ESA CCI SM 233 

updates will be released. 234 

3 SM2RAIN-CCI performance 235 

The SM2RAIN-CCI rainfall data set is available from 1
st
 of January 1998 to 31

st
 December 2015 with daily temporal 236 

resolution. The data are provided over a 0.25° grid on a global scale, given the native spatial resolution of SM 237 

observation of 25 and 50 km. The spatio-temporal coverage is reported in Figure 3. As it can be seen, there is an 238 

increase of available data after 2002 and 2007, corresponding to the start of the AMSR-E and ASCAT operations, 239 

respectively. Before 2002, the ESA CCI SM products are characterized by a small amount of data, due to longer revisit 240 

times of the used satellites. Before that date, the rainfall estimates obtained through SM2RAIN should be used with 241 

caution because of the likelihood of missing precipitation events. The lack of data over tropical areas and at high 242 

latitudes is due to the application of the mask described above. Figure 3 also shows the mean daily rainfall for the 243 

SM2RAIN-CCI data set during the analysis period. As it can be seen, an increase in the daily values can be observed 244 

after 2007, especially over the tropical areas, where the seasonality is well reproduced, due to the higher number of 245 

satellite overpasses.  246 

When compared to the GPCC-FDD rainfall data set, SM2RAIN-CCI shows relatively good performance for 5-day 247 

rainfall accumulation both in terms of correlation and RMSD, as drawn in Figure 4 for the ±50° latitude bands during 248 

the three calibration periods at 1° of spatial resolution, in order to perform a fair comparison with the benchmark. 249 

SM2RAIN-CCI rainfall shows relatively good agreement with GPCC-FDD, especially over Africa, Australia, India and 250 

South America in terms of correlation (R). The RMSD pattern is related to the rainfall regimes. The highest values are 251 

located in those regions characterized by high total annual precipitation, e.g. tropical areas. The comparison also 252 

provides better performance for the 2007-2013 period than for the 1998-2001 and 2002-2006 periods due to the better 253 

temporal coverage of the ESA CCI SM products and their improved accuracy (Dorigo et al., 2015). As it can be seen in 254 

Figure 4, the median R (RMSD) obtained for the 1998-2001 calibration period is 0.54 (10.94 mm), while for the 2007-255 

2013 period, a median value of 0.65 (9.6 mm) is obtained. Indeed, due to the nature of the SM2RAIN algorithm, more 256 

frequent satellite overpasses are expected to provide more reliable rainfall estimates. SM2RAIN-CCI shows a lower 257 

performance over the Sahara Desert and at high latitudes, due to lower SM data quality over these regions. Figure 4 also 258 

displays the lower performances obtained for the eastern US. A similar performance pattern was also found by Massari 259 

et al. (2017) who calculated global correlation of different rainfall data sets by applying the Extended TC (McColl et 260 

al.2014) analysis. A cross-comparison of SM2RAIN-CCI with GPCC, TRMM, CMORPH, ERA-Interim and MSWEP 261 

is reported in Figure 5. The Figure displays the 1°x1° (± 50°) correlation maps of 5 day of accumulated rainfall (on the 262 

left) and the differences in the mean annual rainfall (on the right) between SM2RAIN-CCI and the other rainfall data 263 

sets. The difference in the mean annual rainfall are calculated by subtracting the mean annual rainfall of each data set to 264 

the one provided by SM2RAIN-CCI.  The analysis shows that SM2RAIN-CCI rainfall estimates are in good agreement 265 

with the state-of-the-art data sets both in terms of R and mean annual rainfall. Non-negligible differences can be 266 

observed over the Sahara Desert, Eastern US, South America, the tropical area and over Europe, where SM2RAIN-CCI 267 
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provides a smaller amount of rainfall than the other rainfall data sets. On the other hand, very good performance can be 268 

observed over Africa, Brazil, western US, India and Australia, both in terms of R and mean annual rainfall. 269 

Seven macro-regions worldwide have been selected to check the capability of the SM2RAIN-CCI in estimating rainfall 270 

under different climatic conditions. Therefore, Mean monthly rainfall (MMR) was computed from GPCC-FDD and 271 

SM2RAIN-CCI during the period 1998-2013 within these regions, illustrated as green boxes in Figure 6. From Figure 272 

6, one can see that the temporal rainfall patterns agree well in all considered macro-regions. SM2RAIN-CCI provides a 273 

general underestimation before 2007, due to the increased number of data gaps. Indeed, if the GPCC-FDD MMR is 274 

estimated only when SM observations are available (i.e. when both GPCC-FDD and SM2RAIN-CCI provide a rainfall 275 

estimate), the two estimates are very close to each other, for the entire analysis period.  276 

3.1 SM2RAIN-CCI performance over time 277 

Figure 7 shows box plots of R and RMSD values between SM2RAIN-CCI and MSWEP on a yearly scale. The use of 278 

an independent benchmark removes the effect of the algorithm calibration against GPCC-FDD data set and (partly) the 279 

effect of in situ stations density on the benchmark reliability. The comparison is carried out over the ± 50° latitude band. 280 

The SM2RAIN-CCI rainfall product generally agrees well with MSWEP. An increasing trend in the performance can 281 

be observed over time during the analysis period, highlighting the impact of data availability on estimation uncertainty. 282 

The most significant improvements can be observed in 2003 and 2007, corresponding to the start of AMSR-E and 283 

ASCAT operations, respectively. Figure 7 shows that the SM2RAIN-CCI product provides the lowest R (0.57) during 284 

2001 and the highest (0.80) during 2013. Similar patterns are found for the RMSD score. The improvements are not just 285 

recognizable in the median values, but also in the spread of R and RMSD values within each year.    286 

3.2 Regional scale assessment 287 

For the regional scale assessment, three macro-areas with a high rain gauge station density are selected, which are 288 

Europe, India, and Australia. SM2RAIN-CCI estimates are compared against data from these ground-based 289 

measurements on the 0.25° scale.  290 

The comparison over Europe is carried out by considering the so-called E-OBS rainfall data set (Haylock et al., 2008) 291 

as benchmark. This data set provides daily rainfall estimates over the European area at 0.25° spatial resolution starting 292 

from 1950. The estimates are obtained by interpolating via a three-step kriging procedure rainfall values from gauge 293 

stations over Europe. For this analysis, we consider the region between -9.875°W and 24.875°E longitude and between 294 

28.125°N and 59.875°N latitude. Due to the TRMM orbit geometry, the considered TRMMRT data set covers only the 295 

area between 28.125°N and 49.875°N latitude.  The analysis is carried out during the period 2002-2015, in order to 296 

avoid to consider partly the data calibrated during the period 1998-2001. Figure 8 shows R and RMSD statistics against 297 

E-OBS for 5 days accumulated rainfall. As can be seen, SM2RAIN-CCI provides a median R lower than 0.5, close to 298 

that provided by TRMMRT and CMORPH. All rainfall products show a large variability in terms of R, ranging 299 

between -0.4 and almost 1. In terms of RMSD, all the products show median values close to 10 mm, with values 300 

ranging approximately between 5 and 20 mm. ERA Interim provided very good performance, both in terms of R and 301 

RMSD, due to the use of dense meteorological networks in Europe that guarantees good performance of the ERA-302 

Interim reanalysis product. It is worth noting that ERA-Interim does not use raingaug data, but only other 303 

meteorological variables. MSWEP provided the best performance over Europe, due to the merging of different rainfall 304 

products. In general, SM2RAIN-CCI performs quite well in southern Europe (Italy, Spain and southern France). In 305 
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central and northern Europe, observations are subject to a high selective masking of frozen soil and snow, which 306 

reduces the temporal observation density and hence also the SM2RAIN retrieval accuracy. 307 

The analysis over India is carried out during the period 2002-2015 using observed rainfall data provided by the India 308 

Meteorological Department (IMD). The considered region spans from 70°E to 90°E longitude and from 5°N to 25°N 309 

latitude. As can be seen in Figure 8, R values are generally higher than those obtained over Europe, most likely due to 310 

the strong seasonal signal. The SM2RAIN-CCI data set shows a median R of 0.60, which is slightly lower than that 311 

achieved by TRMMRT, CMORPH, ERA Interim and MSWEP. In terms of RMSD, values are generally higher than 312 

over Europe, which result from the larger annual precipitation amount. SM2RAIN-CCI performs very well over India, 313 

and is less reliable along the coast and in the Northern parts of the country due to the impact of the Himalaya. 314 

Over Australia, the Australian Water Availability Project (AWAP) observed rainfall data during the period 2010-2013 315 

is used as benchmark. The analysis box spans from 120°E to 160°E longitude and from 10°S to 40°S latitude. The 316 

analysis shows very good results both in terms of R and RMSD (Figure 8). SM2RAIN-CCI provides a median R of 0.71 317 

which is higher than that obtained with TRMMRT and CMORPH. Moreover, R values are consistently higher than 0.5 318 

in the entire macro-region. In terms of RMSD, median value of 11.90 mm is obtained for SM2RAIN-CCI, while 319 

TRMMRT and CMORPH provided median values of 16.56 mm and 13.52 mm, respectively. The large variability of 320 

errors is related to the different rainfall regimes in Australia, i.e. tropical climate in the northern sector and drier 321 

conditions in the inland part. In tropical rainfall regimes, the SM2RAIN algorithm is often subject to close-to-saturation 322 

soil conditions, which lead to a general underestimation of precipitation. Results are consistent with those of Tarpanelli 323 

et al., (2017) who applied the SM2RAIN algorithm to multiple satellite SM products over India.  324 

4 CONCLUSIONS 325 

This study presents a new rainfall data set obtained through the application of the SM2RAIN algorithm (Brocca et al., 326 

2014) to the ACTIVE and the PASSIVE ESA CCI SM products (Dorigo et al., 2017, in review) during the period 1998-327 

2015, named SM2RAIN-CCI. The algorithm is calibrated using the GPCC-FDD data set. Due to the different 328 

characteristics of the satellite sensors used for creating the input SM data sets, three different calibrations periods are 329 

considered: 1) 1998-2001; 2) 2002-2006 and 3) 2007-2013. The minimization of the RMSD between 5-day 330 

accumulated rainfall from GPCC-FDD and SM2RAIN applied to both the ACTIVE and PASSIVE ESA CCI SM data 331 

sets is used as objective function. After the calibration, the two rainfall products derived from the ACTIVE and the 332 

PASSIVE ESA CCI SM data sets are merged into the final SM2RAIN-CCI data set. SM2RAIN-CCI data set is 333 

available on a global scale (over land) with a daily temporal sampling on a 0.25° regular grid. A mask is applied to the 334 

data set in order to remove pixels and observations characterized by high topographic complexity, frozen soil and high 335 

snow probability.  336 

The SM2RAIN-CCI data set is compared to 3 different global (or quasi-global) state-of-the-art rainfall products in order 337 

to check its capability in rainfall estimation. In general, the SM2RAIN-CCI shows relatively good performance in 338 

precipitation estimation, especially during the 2007-2013 period (see Figure 4 and 5). On a global scale and for the 339 

entire analysis period, 5-day SM2RAIN-CCI rainfall estimates provide a median R of 0.67 when compared to MSWEP 340 

(see Figure 7). 341 

 The product is further evaluated over three macro-areas (Europe, India and Australia) where it provides satisfactory 342 

results, both in terms of R and RMSD when compared to spatially interpolated high-density rain gauge measurement 343 

networks (see Figure 8). Higher errors are found over India and Australia due to the larger total rainfall amounts of 344 
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precipitation.  However, the analysis showed relatively good results also over 5 other considered macro-regions (see 345 

Figure 5) when compared to GPCC-FDD. In these regions, the impact of reduced temporal coverage on retrieval 346 

accuracy is clearly visible.  347 

The multi-sensor data sets provided by ESA CCI and the application of SM2RAIN could open new perspectives and 348 

opportunities in the use of satellite rainfall products over developing countries or in remote areas with non-existing or 349 

spatially-sparse ground monitoring networks. The new product is potentially suitable for several applications in the 350 

domains of climate (due to the long temporal coverage) and hydrology (due to good capabilities in accumulated rainfall 351 

estimation), complementing other state-of-the-art rainfall products. Moreover, the SM2RAIN-CCI is completely 352 

independent from other existing state-of-the-art precipitation products, therefore offering an additional long-term data 353 

set that can be used for independently evaluating these global-scale precipitation products as shown by Massari et al. 354 

(2017). 355 
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TABLES 504 

 505 

Sensor (Active/Passive) Temporal interval 

AMI-WS / SSMI & TMI 1998-01-01 to 2002-06-30 

AMI-WS / AMSR-E 2002-07-01 to 2006-12-31 

ASCAT-A & ASCAT B / AMSR-E & 

Windsat & SMOS & AMSR2 
2007-01-01 to 2013-12-31 

AMI-WS / SSMI & TMI & AMSR-E 1992-01-01 to 2006-12-31 

ASCAT-A & ASCAT-B / AMSR-E & 

Windsat & SMOS & AMSR2 
2007-01-01 to 2013-12-31 

 506 

Table 1 – Available sensors and temporal intervals considered for the SM2RAIN algorithm application. 507 

 508 

 509 

 510 

511 
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FIGURES 512 

 513 

Figure 1 – Data mask used for remove areas (red areas) characterized by issues in the soil moisture retrieval.   514 
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 515 

Figure 2 - Analysis framework.  516 
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 518 

Figure 3 – Hovmoller plot showing the spatial-temporal data availability, in percentage of the total annual available data 519 
(upper panel) and the mean daily rainfall (lower panel) of the SM2RAIN-CCI rainfall data set for different latitude bands.  520 
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 522 

Figure 4 – Global Pearson correlation (left) and Root Mean Square Difference (right) maps obtained between GPCC-FDD 523 
and the SM2RAIN-CCI rainfall data set for 5-day accumulated rainfall during the periods 1998-2001 (upper panel), 2002-524 
2006 (middle panel) and 2007-2013 (lower panel). 525 
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 527 

Figure 5 – Correlation maps for 5 days of accumulated rainfall (left column) and differences in mean annual rainfall (right 528 
column) obtained by comparing (from top to bottom) SM2RAIN-CCI and GPCC (a), SM2RAIN-CCI and TRMMRT (b), 529 
SM2RAIN-CCI and CMORPH (c), SM2RAIN-CCI and ERA-Interim (d) and SM2RAIN-CCI and MSWEP (e) at 1° of 530 
spatial resolution.  531 

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-86

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 21 September 2017
c© Author(s) 2017. CC BY 4.0 License.



21 

 

 532 

Figure 6 – Mean Monthly Rainfall estimated by GPCC-FDD (blue line) and the new CCI-derived rainfall data set (red line) 533 
over the six analysis boxes throughout North America (A), South America (B), Europe (C), Sahel (D), Asia (E), India (F) and 534 
Australia (G) during the period 1998-2013. The blue lines draw the Mean Monthly Rainfall estimated by GPCC-FDD when 535 
both a ground-based and a SM-derived rainfall estimate is available. 536 
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 538 

Figure 7 –  Yearly boxplots for the correlation coefficients (R) and Root Mean Square Differences (RMSD, in mm) between 539 
SM2RAIN-CCI and MSWEP obtained on a global scale at 0.25° spatial resolution during the period 1998-2015. For each box, 540 
the red line represents the median values, the blue box the 25th and 75th percentile, while the black dotted whiskers extend to 541 
the most extreme data points. 542 
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 544 

Figure 8 – Correlation coefficient (left) and Root Mean Square Difference (RMSD, right) box plots obtained by comparing 545 
SM2RAIN-CCI (in red), TRMMRT (in green), CMORPH (in blue), ERA-Interim (in black) and MSWEP (in magenta) with 546 
gauge-based data sets over Europe (top), India (middle) and Australia (bottom). 547 
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